Robust MR method developed for two-sample MR settings that downweights and excludes instrumental variables (IVs) with heterogeneous causal estimates that are likely invalid using robust regression.
This method specifically MM-estimation, a combination of "maximum-likelihood-type" estimation (i.e., an M-estimator) and "scale-type" estimation (i.e., an S-estimator) to provide a model that is robust to outliers in an MR analysis. See also MR Lasso and MR with penalized weights.
References
Other terms in 'Pleiotropy-robust two-sample MR methods':
- Bayes MR
- Bayesian implementation of the MR-Egger Estimator (BMRE)
- Bayesian multi-instrument Mendelian randomization (MIMR)
- Bayesian network analysis
- Causal Analysis Using Summary Effect estimates (MR-CAUSE)
- Contamination mixture models
- Generalized Summary MR (GSMR)
- Genetic Instrumental Variable (GIV)
- Hierarchical joint Analysis of Marginal summary statistics (hJAM)
- Inverse variance weighted (IVW) random effects model
- Iterative Mendelian Randomization and Pleiotropy (IMRP)
- Leave-one-out analysis
- Median-based estimate
- Mode-based estimate
- MR accounting for Correlated and Idiosyncratic Pleiotropy (MRCIP)
- MR accounting for Linkage Disequilibrium and Pleiotropy (MR-LDP)
- MR Lasso
- MR Mixture (MRMix)
- MR with penalized weights
- MR with regularization
- MR-Clust
- MR-Egger regression and extensions
- MR-Link
- MR-Path
- Multivariable MR (MVMR) and extensions
- Welch-weighted Egger regression (WWER)